题面
Sol
先不管\(a\)的限制
设\(f(n)\)表示f的约数和(\(据说是\sigma\)),它是个积性函数,\(n<m\)则题目要求的就是\(\sum_{i=1}^{n}\sum_{j=1}^{m}f(gcd(i, j))\)
考虑每个\(gcd\)的贡献,\(\sum_{i=1}^{n}f(i)\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\mu(j)\lfloor\frac{n}{i*j}\rfloor\lfloor\frac{m}{i*j}\rfloor\)
替换\(i*j\)就是\(\sum_{k=1}^{n}\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor\sum_{d|k}f(d)\mu(\frac{k}{d})\)
但是我们有限制,就不能直接筛\(\sum_{d|k}f(d)\mu(\frac{k}{d})\)
所以考虑离线处理,把询问按a排序,每次把小于等于a的\(f\)同它的所有倍数n的\(\sum_{d|n}f(d)\mu(\frac{n}{d})\)加进来,树状数组维护前缀和即可
只要预处理处\(\mu\)和\(f\)就好了,见上面的筛法链接
# include# define RG register# define IL inline# define Fill(a, b) memset(a, b, sizeof(a))using namespace std;typedef long long ll;const int _(1e5 + 1), INF(2147483647);IL ll Read(){ RG ll x = 0, z = 1; RG char c = getchar(); for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1; for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); return x * z;}int prime[_], num, N, Q, id[_], ans[_], f[_], mu[_], sumd[_], powd[_], bit[_];bool isprime[_];struct Qry{ int n, m, a, id; IL bool operator <(RG Qry B) const{ return a < B.a; }} qry[_];IL void Prepare(){ isprime[1] = 1; id[1] = f[1] = mu[1] = 1; for(RG int i = 2; i < N; ++i){ id[i] = i; if(!isprime[i]){ prime[++num] = i; f[i] = i + 1; mu[i] = -1; sumd[i] = 1 + i; powd[i] = i; } for(RG int j = 1; j <= num && i * prime[j] < N; ++j){ isprime[i * prime[j]] = 1; if(i % prime[j]){ sumd[i * prime[j]] = 1 + prime[j]; powd[i * prime[j]] = prime[j]; f[i * prime[j]] = f[i] * f[prime[j]]; mu[i * prime[j]] = -mu[i]; } else{ mu[i * prime[j]] = 0; powd[i * prime[j]] = powd[i] * prime[j]; sumd[i * prime[j]] = sumd[i] + powd[i * prime[j]]; f[i * prime[j]] = f[i] / sumd[i] * sumd[i * prime[j]]; break; } } }}IL bool Cmp(RG int x, RG int y){ return f[x] < f[y]; }IL void Add(RG int x, RG int d){ for(; x < N; x += x & -x) bit[x] += d; }IL int Query(RG int x){ RG int ret = 0; for(; x; x -= x & -x) ret += bit[x]; return ret; }IL int Calc(RG int n, RG int m){ RG int ret = 0, lst = 0, now; for(RG int i = 1, j; i <= n; i = j + 1){ j = min(n / (n / i), m / (m / i)); now = Query(j); ret += (n / i) * (m / i) * (now - lst); lst = now; } return ret;}int main(RG int argc, RG char* argv[]){ Q = Read(); for(RG int i = 1, n, m, a; i <= Q; ++i){ n = Read(); m = Read(); a = Read(); if(n > m) swap(n, m); qry[i] = (Qry){n, m, a, i}; N = max(N, n + 1); } Prepare(); sort(qry + 1, qry + Q + 1); sort(id + 1, id + N, Cmp); for(RG int i = 1, j = 1; i <= Q; ++i){ for(; j < N && f[id[j]] <= qry[i].a; ++j) for(RG int k = id[j]; k < N; k += id[j]) Add(k, f[id[j]] * mu[k / id[j]]); ans[qry[i].id] = Calc(qry[i].n, qry[i].m); } for(RG int i = 1; i <= Q; ++i) printf("%d\n", ans[i] < 0 ? ans[i] + INF + 1 : ans[i]); return 0;}